首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18552篇
  免费   2234篇
  国内免费   1181篇
电工技术   2308篇
综合类   1598篇
化学工业   1819篇
金属工艺   1375篇
机械仪表   1026篇
建筑科学   1522篇
矿业工程   322篇
能源动力   2409篇
轻工业   987篇
水利工程   420篇
石油天然气   673篇
武器工业   161篇
无线电   1714篇
一般工业技术   2405篇
冶金工业   1012篇
原子能技术   678篇
自动化技术   1538篇
  2024年   31篇
  2023年   265篇
  2022年   518篇
  2021年   703篇
  2020年   688篇
  2019年   633篇
  2018年   604篇
  2017年   731篇
  2016年   786篇
  2015年   777篇
  2014年   1165篇
  2013年   1278篇
  2012年   1287篇
  2011年   1624篇
  2010年   1136篇
  2009年   1152篇
  2008年   1032篇
  2007年   1184篇
  2006年   1036篇
  2005年   900篇
  2004年   786篇
  2003年   656篇
  2002年   577篇
  2001年   452篇
  2000年   341篇
  1999年   292篇
  1998年   230篇
  1997年   180篇
  1996年   163篇
  1995年   144篇
  1994年   116篇
  1993年   83篇
  1992年   69篇
  1991年   57篇
  1990年   49篇
  1989年   41篇
  1988年   26篇
  1987年   31篇
  1986年   18篇
  1985年   21篇
  1984年   24篇
  1983年   9篇
  1982年   13篇
  1981年   6篇
  1980年   7篇
  1979年   8篇
  1966年   3篇
  1964年   4篇
  1963年   3篇
  1959年   4篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
31.
随着生态环境意识的加强和环保治理力度的提升,平板玻璃窑炉烟气氮氧化物治理已经全面落实。而由于平板显示基板玻璃窑炉烟气性质的独特性,其脱硝技术路线的选择也取决于不同地区氮氧化物排放浓度的限值差异。详细介绍了选择性催化还原法(SCR)、选择性非催化还原法(SNCR)和逆向流选择性催化还原法(CSCR)三种脱硝技术并对比了三者之间在脱硝效率、反应温度、初始投资、全生命周期成本的差异。同时,对未来的发展应用进行了展望。  相似文献   
32.
The chief intent of this review is to explain the different extraction techniques and efficiencies for the recovery of protein from food waste (FW) sources. Although FW is not a new concept, increasing concerns about chronic hunger, nutritional deficiency, food security, and sustainability have intensified attention on alternative and sustainable sources of protein for food and feed. Initiatives to extract and utilize protein from FW on a commercial scale have been undertaken, mainly in the developed countries, but they remain largely underutilized and generally suited for low-quality products. The current analysis reveals the extraction of protein from FW is a many-sided (complex) issue, and that identifies for a stronger and extensive integration of diverse extraction perspectives, focusing on nutritional quality, yield, and functionality of the isolated protein as a valued recycled ingredient.  相似文献   
33.
In this study, a corrosion-stable silica membrane was developed to be used in H2 purification during the hydrogen iodide decomposition (2HI → H2 + I2), which is a new application of the silica membranes. From a practical perspective, the membrane separation length was enlarged up to 400 mm and one end of the membrane tubes was closed to avoid any thermal variation along the membrane length and sealing issues. The silica membranes consisted of a three-layer structure comprising a porous α-Al2O3 ceramic support, an intermediate layer, and a top silica layer. The intermediate layer was composed of γ-Al2O3 or silica, and the top silica layer that is H2 selective was prepared via counter-diffusion chemical vapor deposition of a hexyltrimethoxysilane.To the best of our knowledge, this is the first report of 400-mm-long closed-end silica membranes supported on Si-formed α-Al2O3 tubes produced via chemical vapor deposition method. A 400-mm-long closed-end membrane using a Si-formed α-Al2O3 tube exhibited a higher H2/SF6 selectivity of 1240 but lower H2 permeance of 1.4 × 10−7 mol Pa−1 m−2 s−1 with compared with the membrane using a γ-Al2O3-formed α-Al2O3 tube (907 and 5.6 × 10−7 mol Pa−1 m−2 s−1, respectively). The membrane using the Si-formed α-Al2O3 tube was more stable in corrosive HI gas than a membrane with a γ-Al2O3-formed α-Al2O3 tube after 300 h of stability tests. In conclusion, the developed silica membranes using the Si-formed α-Al2O3 tubes seem suitable for membrane reactors that produce H2 on large scale using HI decomposition in the thermochemical iodine–sulfur process.  相似文献   
34.
Biochar has been used as an environment-friendly enhancer to improve the hydraulic properties(e.g.suction and water retention) of soil.However,variations in densities alter the properties of the soil-biochar mix.Such density variations are observed in agriculture(loosely compacted) and engineering(densely compacted) applications.The influence of biochar amendment on gas permeability of soil has been barely investigated,especially for soil with diffe rent densities.The maj or obj ective of this study is to investigate the water retention capacity,and gas permeability of biochar-amended soil(BAS) with different biochar contents under varying degree of compaction(DOC) conditions.In-house produced novel biochar was mixed with the soil at different amendment rates(i.e.biochar contents of 0%,5% and 10%).All BAS samples were compacted at three DOCs(65%,80% and 95%) in polyvinyl chloride(PVC)tubes.Each soil column was subjected to drying-wetting cycles,during which soil suction,water content,and gas permeability were measured.A simplified theoretical framework for estimating the void ratio of BAS was proposed.The experimental results reveal that the addition of biochar significantly decreased gas permeability k_g as compared with that of bare soil(BS).However,the addition of 5%biochar is found to be optimum in decreasing kg with an increase of DOC(i.e.k_(g,65%) k_(g,80%) k_(g,95%)) at a relatively low suction range(200 kPa) because both biochar and compaction treatment reduce the connected pores.  相似文献   
35.
Bio-hydrogenated diesel (BHD) is a second generation biofuel that can be produced from vegetable oil and hydrogen via hydroprocessing. BHD is considered as one of alternative and renewable energy. This work presents evaluation of environmental impacts of BHD produced from palm fatty acid distillate (PFAD) compared to fatty acid methyl ester (FAME). Greenhouse gas emission, energy consumption, and overall environmental impacts are assessed. System boundary is from palm oil cultivation to BHD production. The functional unit is defined as 1 kg of fuel produced at the plant. The results indicate that energy consumption of BHD-PFAD is 1.18 times higher than that of BHD-FAME, while giving GHG emission 13.56 times lower than that of BHD-FAME. The results of overall environmental impacts indicated that BHD-PFAD was 3.58 greater than that of BHD-FAME.  相似文献   
36.
People in the Middle East are facing the problem of freshwater shortages. This problem is more intense for a remote region, which has no access to the power grid. The use of seawater desalination technology integrated with the generated energy unit by renewable energy sources could help overcome this problem. In this study, we refer a seawater reverse osmosis desalination (SWROD) plant with a capacity of 1.5 m3/h used on Larak Island, Iran. Moreover, for producing fresh water and meet the load demand of the SWROD plant, three different stand‐alone hybrid renewable energy systems (SAHRES), namely wind turbine (WT)/photovoltaic (PV)/battery bank storage (BBS), PV/BBS, and WT/BBS are modeled and investigated. The optimization problem was coded in MATLAB software. Furthermore, the optimized results were obtained by the division algorithm (DA). The DA has been developed to solve the sizing problem of three SAHRES configurations by considering the object function's constraints. These results show that this improved algorithm has been simpler, more precise, faster, and more flexible than a genetic algorithm (GA) in solving problems. Moreover, the minimum total life cycle cost (TLCC = 243 763$), with minimum loss of power supply probability (LPSP = 0%) and maximum reliability, was related to the WT/PV/BBS configuration. WT/PV/BBS is also the best configuration to use less battery as a backup unit (69 units). The batteries in this configuration have a longer life cycle (maximum average of annual battery charge level) than two other configurations (93.86%). Moreover, the optimized results have shown that utilizing the configuration of WT/PV/BBS could lead to attaining a cost‐effective and green (without environmental pollution) SAHRES, with high reliability for remote areas, with appropriate potential of wind and solar irradiance.  相似文献   
37.
In overall iodine-sulphur (I-S) cycle (Bunsen reaction), HI decomposition is a serious challenge for improvement in H2 production efficiency. Herein, we are reporting an electrochemical process for HI decomposition and simultaneous H2 and I2 production. Commercial Nafion 117 membrane has been generally utilized as a separator, which also showed huge water transport (electro-osmosis), and deterioration in conductivity due to dehydration. We report sulphonated poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) (SCP) and sulphonated graphene oxide (SGO) composite stable and efficient polymer electrolyte membrane (PEM) for HI electrolysis and H2 production. Different SCP/SGO composite PEMs were prepared and extensively characterized for water content, ion-exchange capacity (IEC), conductivity, and stabilities (mechanical, chemical, and thermal) in comparison with commercial Nafion117 membrane. Most suitable optimized SCP/SGO-30 composite PEM exhibited 6.78 × 10?2 S cm?1 conductivity in comparison with 9.60 × 10?2 S cm?1 for Nafion® 117. The electro-osmotic flux ofSCP/SGO-30 composite PEM (2.53 × 10?4 cm s?1) was also comparatively lower than Nafion® 117 membrane (2.75 × 10?4 cm s?1). For HI electrolysis experiments, SCP/SGO-30 composite PEM showed good performance such as 93.4% current efficiency (η), and 0.043 kWh/mol-H2 power consumption (Ψ). Further, intelligent architecture of SCP/SGO composite PEM, in which hydrophilic SGO was introduced between fluorinated polymer by strong hydrogen bonding, high efficiency and performance make them suitable candidate for electrochemical HI decomposition, and other diversified electrochemical processes.  相似文献   
38.
Underwater pulsed discharge is widely applied in medicine, machining, and material modification. The induced cavitation bubble and subsequent cavitation collapse are considered the major motivations behind these applications. This paper presents an underwater pulsed discharge system. The experimental setup is established to induce and investigate the cavitation bubble assisted with a high-speed camera. Three aspects, including the characteristic of the discharge with different applied voltages and conductivities, the evolution of the cavitation bubble profile, and the energy efficiency of cavitation bubble inducing, are investigated, respectively. Especially, the mechanism of pre-discharge time delay in the low field intensity case is explained using the Joule heat effect. The results show the validity of the underwater pulsed discharger and experimental setup. The present underwater pulsed discharger is proved to be a simple, portable, and easy-to-implement device for the investigation of cavitation bubble dynamics.  相似文献   
39.
40.
屈可朋  李亮亮  肖玮 《爆破器材》2019,48(4):43-46,53
基于一级轻气炮加载装置,研究了高低温循环及对称冲击耦合加载下某黑索今(RDX)基含Al炸药的安全性,计算了缺陷处的内能等参数。结果表明:高低温循环后,炸药试样出现可见的孔隙。对称碰撞加载后,不经高低温循环的试样未发生点火,应力加载峰值为835 MPa,加载时间为35 μs;而经历高低温循环的试样出现点火,点火前应力为242 MPa,加载时间11 μs。高低温循环所产生的缺陷是导致炸药点火的重要原因。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号